- ITO, T. & SUGAWARA, Y. (1983). Best-plane Program, 3^e version (BP7C). The Institute of Physical and Chemical Research, Wako-shi, Saitama 351, Japon.
- JOHNSON, C. K. (1965). ORTEP. Rapport ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- KANTERS, J. A., KROON, J., PEERDEMAN, A. F. & SHOONE, J. C. (1967). *Tetrahedron*, 23, 4027–4033.
- KLYNE, W., SWAN, R. J., BYCROFT, B. W., SCHUMANN, D. & SCHMID, H. (1965). *Helv. Chim. Acta*, **48**, 443–452.
- LAMOTTE, J., DUPONT, L., DIDEBERG, O. & LEWIN, G. (1980). Acta Cryst. B36, 196–198.

LE MEN, J. & TAYLOR, W. I. (1965). Experientia, 21, 508-510.

- LEWIN, G., ROLLAND, Y. & POISSON, J. (1980). Heterocycles, 14, 1915-1920.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3^e édition, p. 229. Ithaca: Cornell Univ. Press.
- WATSON, W. H., VICKOVIĆ, I. & TERNAY, A. L. JR (1985). Acta Cryst. C41, 1090-1092.
- WYCKOFF, R. W. G. (1969a). Crystal Structure, Tome 6, 1^{ere} partie, 2^e édition, pp. 154 et 348. New York: Interscience.
- WYCKOFF, R. W. G. (1969b). Crystal Structure, Tome 6, 1^{ère} partie, 2^e édition, pp. 160 et 163. New York: Interscience.

Acta Cryst. (1986). C42, 1610-1612

Structure de la Dihydroxy- 6β , 7β Dihydrocanrénone

PAR L. DUPONT ET O. DIDEBERG

Laboratoire de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

L. CHRISTIAENS

Laboratoire de Chimie organique hétérocyclique, Institut de Chimie B6, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

et P. Genard

Département de Clinique et Pathologie Médicale, Institut de Médecine J4, Hôpital de Bavière, Bld de la Constitution, 66, B-4020 Liège, Belgique

(Reçu le 21 janvier 1986, accepté le 12 mai 1986)

Abstract. $C_{22}H_{30}O_5$, $M_r = 374.77$, orthorhombic, $P2_{12}1_{21}$, a = 8.336 (3), b = 10.217 (3), c = 45.803 (5) Å, V = 3901 (2) Å³, Z = 8, $D_x = 1.275$ g cm⁻³, λ (Mo K α) = 0.7107 Å, $\mu = 0.52$ cm⁻¹, T = 290 K, F(000) = 1616, final R = 0.07 for 3108 observed reflections. Structure solved by direct methods. Ring A has an envelope conformation, rings B and C are chair with O(6) in an axial position and O(7) in a quasi-equatorial one. Rings D and E are intermediate between envelope and twist (or half-chair).

Introduction. Des travaux antérieurs (Genard, Palem-Vliers & Eechaute, 1977; Genard & Palem-Vliers, 1981) font suspecter l'existence chez l'homme et chez l'animal de stéroïdes spirolactoniques de structure voisine de celle des antagonistes synthétiques de l'aldostérone. Des données chromatographiques et spectroscopiques donnent à penser qu'il pourrait s'agir de dihydrocanrénone substituée en C(6) et C(7) par des groupes hydroxyles. Partant de cette hypothèse, trois isomères de la dihydroxy-dihydrocanrénone (DHC) ont été synthétisés ($6\alpha, 7\alpha$; $6\beta, 7\beta$ et $6\beta, 7\alpha$). Il a été prouvé par la suite (Genard, Palem-Vliers, Lomba-Pignon, Christiaens & De Graeve, 1985) que ces trois isomères existent chez l'homme et chez l'animal, et qu'ils possèdent une activité biologique consistant en une action sur l'excrétion du Na⁺ et du K⁺. La présente étude radiocristallographique a été réalisée dans le cadre de l'identification de chacun de ces isomères, l'analyse par RMN n'ayant pas permis de lever toutes les ambiguïtés.

Partie expérimentale. Cristallisé dans l'éthanol. Cristal incolore: $0,6 \times 0,6 \times 0,2$ mm. Paramètres de la maille déterminés à partir de 15 réflexions ($9,8 \le \theta \le 12,5^{\circ}$). Diffractomètre Siemens, 3962 réflexions mesurées, $\theta \le 25^{\circ}$, Mo Ka monochromatisée au graphite, balayage ω , 3871 réflexions indépendantes ($0 \le h \le 9$, $0 \le k \le 12$, $0 \le l \le 50$), $R_{int} = 1,5$. 2 réflexions de référence: 1,3,13 ($392 \le F_o \le 423$) et $2\overline{46}$ ($419 \le$ $F_o \le 441$). 3108 réflexions observées [$I > 1,5\sigma(I)$]. Correction d'absorption par la méthode semi-empirique de North, Phillips & Mathews (1968) comprise dans les limites 0,93-0,99. Structure déterminée avec le programme *MULTAN*80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). Affinements basés sur F (matrice entière des équations normales découpée en deux blocs correspondant chacun à une

0108-2701/86/111610-03\$01.50

© 1986 International Union of Crystallography

molécule) avec SHELX76 (Sheldrick, 1976); facteurs de température anisotropes pour tous les atomes non-hydrogène; H placés suivant une géométrie standard, exceptés ceux des OH obtenus par Fourierdifférence. R = 0.07,* wR = 0.08, $w = 1.4/[\sigma^2(F) + 0.00375F^2]$. Δ/σ des paramètres atomiques finaux: <0.8. Fourier-différence: valeurs comprises entre -0.2

* Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes H et des angles de torsion ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 43061: 18 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Tableau 1. Coordonnées fractionnaires (×10⁴) et les $B_{\acute{e}a}$ (Å²) des atomes non-hydrogène, avec les écarts-type

 $B_{eq} = \frac{8}{7}\pi^2 \sum_i \sum_j U_{ij} a_i^* a_i^* a_i, a_j$ où a_i est la constante de la maille directe. La numérotation des atomes de la molécule *B* est incrémentée du nombre constant 50 par rapport à celle des atomes correspondants de la molécule *A*.

	x	у	Z	$B_{\acute{e}q}$
C(1)	-8341 (8)	-1779 (6)	-6577(1)	4,4 (2)
C(2)	-9511 (8)	-2943 (6)	-6595 (1)	4,9 (2)
C(3)	-11096 (8)	-2514 (6)	-6706 (1)	4,4 (2)
C(4)	-11085 (7)	-1484 (5)	-6926 (1)	3,7 (2)
C(5)	-9784 (7)	-831 (5)	-7008 (1)	3,1(1)
C(6)	-9894 (6)	173 (5)	-7249 (1)	3,4 (1)
C(7)	-9167 (7)	1477 (5)	-7164 (1)	3,3 (1)
Č(8)	-7405 (7)	1287 (5)	-7072 (1)	3.0(1)
C(9)	-7378 (7)	342 (5)	-6806 (1)	3,1(1)
C(10)	-8145 (7)	-1041 (5)	-6869(1)	3,2(1)
C(II)	-5711 (8)	204 (6)	-6663 (1)	4,9 (2)
C(12)	-4884 (8)	1517 (6)	-6605 (1)	4,8 (2)
C(13)	-4846 (7)	2358 (5)	-6880(1)	3,6(1)
C(14)	-6567 (6)	2587 (5)	-6984 (1)	3.0(1)
C(15)	-6403 (8)	3677 (5)	-7215 (1)	4.5 (2)
C(16)	-4959 (8)	4510 (6)	-7110(1)	4.3 (2)
C(17)	-4234 (7)	3789 (5)	-6847(1)	3.6 (2)
C(18)	-3801(7)	1687 (7)	-7119(2)	5.2 (2)
C(19)	-7075 (8)	-1867 (6)	-7079(1)	4.6 (2)
C(20)	-4557 (8)	4426 (6)	-6547(1)	4.8 (2)
C(21)	-3050 (9)	4173 (7)	-6367(1)	5.1 (2)
C(22)	-1809 (9)	3966 (6)	-6603 (1)	4.6 (2)
O(3)	-12362 (6)	-2998 (5)	-6623 (1)	63(2)
0(6)	-9099 (5)	-239(4)	-7513(1)	4.4 (1)
O(7)	-9313 (5)	2352(4)	-7413(1)	4.3 (1)
O(17)	-2492 (5)	3832 (4)	6866 (1)	4.1 (1)
0(22)	-344 (6)	3905 (5)	-6575 (1)	6.4 (2)
0(22)	544 (0)	5505 (5)	0070(1)	-, · (=)
C(51)	-13286 (10)	1254 (7)	-4070 (2)	6,1 (2)
C(52)	-14360 (10)	2486 (8)	-4076 (2)	6,9 (2)
C(53)	-13429 (11)	3650 (8)	-4160 (2)	6,4 (2)
C(54)	-12154 (9)	3431 (6)	-4370 (2)	5,3 (2)
C(55)	11702 (7)	2248 (5)	-4472 (1)	3,4 (1)
C(56)	-10406 (8)	2182 (6)	-4704 (1)	4,2 (2)
C(57)	-9128 (7)	1166 (6)	-4632 (1)	3,7 (1)
C(58)	-9852 (6)	-163 (5)	-4563 (1)	2,9 (1)
C(59)	-10993 (7)	8 (5)	-4296 (1)	3,3 (1)
C(60)	-12408 (7)	977 (6)	-4356 (1)	4,0 (2)
C(61)	-11596 (8)	-1295 (6)	-4169 (2)	4,7 (2)
C(62)	-10263 (7)	-2306 (6)	-4116 (1)	4,1 (2)
C(63)	-9276 (7)	-2523 (5)	-4389 (1)	3,3 (1)
C(64)	-8579 (7)	-1198 (5)	-4493 (1)	3,0 (1)
C(65)	-7375 (8)	-1600 (6)	-4735 (1)	4,3 (2)
C(66)	-6738 (9)	-2936 (7)	-4631 (1)	5,0 (2)
C(67)	-7717 (7)	-3335 (5)	-4363 (1)	3,5 (1)
C(68)	-10336 (9)	-3145 (6)	-4628 (2)	4,8 (2)
C(69)	-13617 (9)	438 (8)	-4584 (2)	6,0 (2)
C(70)	-6797 (8)	-3205 (5)	-4072 (1)	3,8 (1)
C(71)	-7352 (8)	-4373 (6)	-3889 (1)	4,1 (2)
C(72)	-7900 (8)	-5345 (7)	-4118 (1)	4,3 (2)
O(53)	-13686 (10)	4765 (7)	-4071 (2)	10.1 (2)
O(56)	-11070 (6)	1802 (5)	-4983 (1)	5,7 (1)
0(57)	-8082 (5)	1108 (4)	-4883 (1)	5,0 (1)
O(67)	-8069 (6)	-4748 (4)	-4381 (1)	4,5 (1)
0(72)	-8204 (6)	-6496 (4)	-4088 (1)	5,5 (1)

et 0,4 e Å⁻³. Facteurs de diffusion sont ceux de SHELX.

Discussion. Le Tableau 1 laisse apparaître une valeur anormalement élevée du facteur de température B de O(53): 10,1 (2) Å² [6,3 (2) Å² pour O(3)], liée probablement au mode d'affinement (en deux blocs). Chacune des deux matrices de corrélation ne présentent cependant pas d'élément >0,5. La comparaison des distances et des angles (Tableau 2) des molécules A et B (Fig. 1) montre des écarts non significatifs pour ces paramètres. Par contre, il y a des différences de l'ordre de 10 fois l'écart-type pour certains angles de torsion: C(10)-C(5)-C(6)-C(7): -50,9(5) [molécule A] et --45,5(6) [molécule B]; C(5)-C(6)-C(7)-C(8): 56,8 (5) (A) et 51.7(5)(B); C(5)-C(6)-C(7)-O(7); 178,9(5)(A) et 174,0 (5) (B); C(9)-C(8)-C(14)-C(13): 57,5 (5) (A) C(18)-C(13)-C(17)-C(20): et 53,5 (5) (*B*); -154,7(5) (A) et -158,7(5) (B); C(8)-C(14)-C(15)-C(16): -156,3 (5) (A) et -160,3 (5) (B); C(13)-C(17)-O(17)-C(22): -102,8(5) (A) et C(16)-C(17)-O(17)-C(22): -107.8(5)(**B**); 143,1 (5) (A) et 138,4 (6) (B) et C(21)-C(22)-O(17)-C(22)-O(17) $C(17): -5,9(5)(A) \text{ et } -1,7(6)^{\circ}(B).$

Tableau 2. Distances interatomiques (Å) et angles des liaisons (°) avec les écarts-type

3,1(1)	•		5 () u ot		•	
3,2 (1)		Malá	Malá		Molá	Molá
4,9 (2)		wide-				
4,8 (2)				C(10) C(10)		
3,6(1)	C(2) = C(1)	1,540(9)	1,544(11)	C(19) = C(10)	1,500(8)	1,555(10)
3,0(1)	C(10) = C(1)	1,546(7)	1,524(10)	C(12) = C(11)	1,551(9)	1,550(9)
4,5 (2)	C(3) = C(2)	1,480(10	1,470(12)	C(13) - C(12)	1,525(8)	1,515(0)
4,3(2)	C(4) = C(3) O(3) = C(3)	1,45/(8)	1,451(12)	C(14) = C(13)	1,556(8)	1,549(7)
3,6 (2)	O(3) - C(3)	1,220(8)	1,230(11)	C(17) = C(13)	1,556(0)	1,547(0)
3,2 (2) 4 6 (2)	C(3) = C(4)	1,520(0)	1,549(9)	C(15) = C(15)	1,550(9)	1,549(8)
4,0(2)	C(0) = C(3)	1,510(7)	1,517(0)	C(16) = C(15)	1 551(9)	1,541(9)
4,0(2) 5 1 (2)	C(10) = C(3)	1,522(8)	1,522(0)	C(17) = C(16)	1,535(8)	1 529(9)
$A_{6}(2)$	O(6) = O(6)	1,313(6)	1,323(5) 1,447(7)	O(17) - C(17)	1455(7)	1,476(7)
	C(8) = C(7)	1 540(8)	1 519(8)	C(20) - C(17)	1.543(8)	1.541(8)
$\Delta A(1)$	O(7) = C(7)	1,340(0)	1,317(0)	C(21) - C(20)	1.525(10	1.530(8)
4 3 (1)	C(9) = C(8)	1 553(7)	1,560(7)	C(22) = C(21)	1.510(10	1.514(9)
4,5(1)	C(14) = C(8)	1,553(7)	1,531(8)	O(17) - C(22)	1,343(8)	1.356(7)
64(2)	C(10) - C(9)	1.577(7)	1.564(8)	O(22) - C(22)	1.229(9)	1.211(8)
0,4 (2)	C(11) - C(9)	1.543(8)	1.537(8)	- (/	-,,	-,
6,1 (2)		1,0 .0 (0)	1,001(0)			
6,9 (2)	C(10)-C(1)-C(2)	113,3(5)	114,5(6)	C(19)-C(10)-C(9)	111,4(4)	112,6(5)
6,4 (2)	C(3)-C(2)-C(1)	110,8(5)	111,0(7)	C(12)C(11)-C(9)	113,5(5)	113,9(5)
5,3 (2)	C(4) - C(3) - C(2)	116,4(6)	115,7(7)	C(13)-C(12)-C(11)	111,2(5)	111,2(5)
3,4 (1)	O(3) - C(3) - C(2)	123,0(6)	124,9(8)	C(14)-C(13)-C(12)	108,8(5)	109,3(4)
4,2 (2)	O(3) - C(3) - C(4)	120,7(6)	119,4(8)	C(17)-C(13)-C(12)	117,1(4)	118,2(4)
3,7 (1)	C(5) - C(4) - C(3)	124,4(5)	124,9(6)	C(17)-C(13)-C(14)	101,2(4)	100,2(4)
2,9 (1)	C(6) - C(5) - C(4)	120,0(5)	118,8(5)	C(18) - C(13) - C(12)	110,1(5)	109,6(5)
3,3 (1)	C(10) - C(5) - C(4)	122,9(5)	122,3(5)	C(18) - C(13) - C(14)	112,0(4)	110,7(4)
4,0 (2)	C(10)-C(5)-C(6)	117,1(4)	118,8(5)	C(18) - C(13) - C(17)	107,4(5)	108,4(5)
4,7 (2)	C(7) - C(6) - C(5)	112,6(4)	112,2(5)	C(13) = C(14) = C(8)	118,8(4)	114,1(5)
4,1 (2)	O(6) - C(6) - C(5)	112,8(4)	111,0(5)	C(15) = C(14) = C(8)	118,7(4)	118,9(4)
3,3(1)	O(6) - C(6) - C(7)	106,8(4)	106,0(5)	C(15) = C(14) = C(13)	103,9(4)	103,4(4)
3,0(1)	C(8) = C(7) = C(6)	107.7(4)	112,1(3)	C(10) = C(15) = C(14)	104,0(3)	103,7(3) 107.5(5)
4,3(2)	O(7) = C(7) = C(0)	107,7(4)	100,2(4)	C(17) = C(18) = C(13)	100,0(3)	107, 5(5) 104, 1(5)
3,0(2)	C(1) = C(1) = C(3)	107.0(4)	107.9(4)	C(10) = C(17) = C(13)	115 2(5)	116 0(4)
3,5(1)	C(9) = C(0) = C(7)	117 1(4)	107,8(4)	C(20) = C(17) = C(15)	115,2(5) 115,2(5)	113 0(5)
4,0(2)	C(14) = C(8) = C(7)	108 0(4)	1007(4)	C(20) = C(17) = C(10)	110,3(3) 110,4(4)	110,9(3)
29(1)	C(14) = C(0) = C(9)	110,7(4)	109,7(4)	O(17) = C(17) = C(15)	100,4(4)	108 8(4)
3,0(1)	C(10) = C(9) = C(8)	113 8(5)	113,1(4)	O(17) = O(17) = O(10)	107, 5(4) 102, 5(4)	103,4(4)
4,1(2)	C(11) = C(3) = C(3)	113,0(3)	113, 5(5)	C(27) = C(20) = C(17)	105 5(5)	104 8(5)
(4,3)(2)	C(1) = C(3) = C(1)	109 6(5)	109 1 (5)	C(27) = C(20) = C(17) C(22) = C(21) = C(20)	101.6(5)	102,9(5)
57(1)	C(9) = C(10) = C(1)	108,7(4)	109.2(5)	O(17) - C(22) - C(21)	111.5(6)	110.5(5)
50(1)	C(9) = C(10) = C(1)	108.3(4)	108.0(5)	O(22) - C(22) - C(21)	127.9(6)	128.4(6)
4.5 (1)	C(19) - C(10) - C(1)	109.3(4)	109.3(6)	O(22) - C(22) - O(17)	120.6(6)	121.0(6)
5.5 (1)	C(19) - C(10) - C(5)	109.4(4)	108.5(5)	C(22) = O(17) = C(17)	111.8(4)	111.7(4)
-,- (-)		,,,	/			

Fig. 1. Vues stéréographiques des molécules A et B, donnant la numérotation des atomes d'oxygène. Les atomes de carbone sont numérotés suivant la convention habituelle dans les stéroïdes.

L'atome O(6) est en position axiale β par rapport au cycle B, tandis que O(7) est en position quasiéquatoriale, ce qui explique les difficultés rencontrées lors de l'analyse par RMN: la conformation du cycle A est du type enveloppe. Les paramètres de Cremer & Pople (1975) calculés avec le programme PUCK2 (Luger & Bülow, 1983) sont en effet les suivants: $\theta = 52.6 \ (8)^{\circ}$ Q = 0,448 (6) Å, et $\varphi = 18 \ (1)^{\circ}$ (molécule A) et Q = 0,447 (8) Å, $\theta = 54,6$ (10)° et $\varphi = 18 (1)^{\circ}$ (molécule B). Le cycle B est chaise: $Q = 0,561 (6) \text{ Å}, \quad \theta = 10,9 (6)^{\circ}$ et $\varphi = 162 \ (3)^{\circ}$ (molécule A) et Q = 0,550 (6) Å, $\theta = 13,1$ (6)° et $\varphi = 187 (3)^{\circ}$ (molécule B). Le cycle C a une conformation similaire: Q = 0.571 (6) Å, $\theta = 9.8$ (6)° et φ $= 266 (3)^{\circ}$ (molécule A) et Q = 0,547 (6) Å, $\theta =$

7,3 (6)° et $\varphi = 246$ (5)° (molécule *B*). Les cycles *D* et *E* sont intermédiaires entre enveloppe et demi-chaise: D: Q = 0,435 (6) Å et $\varphi = 188,5$ (8)° (molécule A) et Q = 0,454 (6) Å et $\varphi = 189,1$ (9)° (molécule B); E: $\tilde{Q} = 0,262$ (6) Å et $\varphi = 26$ (1)° (molécule A) et Q = 0,256 (6) Å et $\varphi =$ 33 (1)° (molécule B). La cohésion du cristal est assurée par les liaisons de van der Waals et deux liaisons hydrogène: O(6)[-2-x, 0, 5+y], -1,5-z]-O(7) = 2,814 (6) Å et O(56)[0,5 + x, 0,5 $v_1 - 1 - z$]-O(57) = 2,783 (6) Å.

Les auteurs remercient M. M. Vermeire pour son assistance technique au niveau des mesures diffractométriques.

Références

- CREMER, D. & POPLE, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- GENARD, P. & PALEM-VLIERS, M. (1981). Ann. Endocrinol. 42, 77.
- GENARD, P., PALEM-VLIERS, M. & EECHAUTE, W. (1977). Res. Steroids, 8, 309-311.
- GENARD, P., PALEM-VLIERS, M., LOMBA-PIGNON, M. R., CHRISTIAENS, L. & DE GRAEVE, J. (1985). Arch. Int. Physiol. Biochim. Sous presse.
- LUGER, P. & BÜLOW, R. (1983). J. Appl. Cryst. 16, 431-432.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. de York, Angleterre, et de Louvain-la-Neuve, Belgique.
- NORTH, A. C. T., PHILLIPS, D. C. & MATHEWS, F. S. (1968). Acta Cryst. A24, 351-359.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. de Cambridge, Angleterre.

Acta Cryst. (1986). C42, 1612–1614

1-Bromo-2-naphthaldehyde

By B. KOPPENHOEFER

Institut für Organische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen 1, Federal Republic of Germany

AND J. W. BATS

Institut für Kristallographie der Universität Frankfurt, Senckenberganlage 30, D-6000 Frankfurt am Main 1, Federal Republic of Germany

(Received 18 February 1986; accepted 28 May 1986)

 $= 7.027 (3), \quad b = 7.430 (2), \quad c = 9.019 (1) \text{ Å}, \quad \alpha = 1000 \text{ Å}$ $\beta = 76.93$ (2), $\gamma = 78.32$ (3)°, V =79.14 (2), 444.2 (2) Å³, Z = 2, $D_x = 1.758$ (1) g cm⁻³, λ (Mo K α) $= 0.71069 \text{ Å}, \quad \mu = 45.3 \text{ cm}^{-1}, \quad F(000) = 232,$ T =

Abstract. C₁₁H₇BrO, $M_r = 235.09$, triclinic, $P\overline{1}$, a 296 K, R(F) = 0.032 for 1508 independent observed reflections. The molecule is planar within experimental error, except for the Br atom, which deviates 0.013(1) Å from the molecular plane. The aldehyde group is involved in a $C-H\cdots Br$ contact with a $H\cdots Br$

0108-2701/86/111612-03\$01.50

© 1986 International Union of Crystallography